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Abstract

In this paper, the hydrodynamic performance of a 2-D flat-plate hydrofoil in rowing motion is numerically studied by

a Cartesian grid method with the cut-cell approach. Adaptive mesh refinement is used to save on the number of mesh

cells without harming spatial resolution in critical regions. The rowing kinematics of the hydrofoil is the same for all

simulations in this work. The design parameters studied are the reduced frequency of the rowing motion, the heave

amplitude, and the time lags of the feathered-to-broadside rotation and the broadside-to-feathered rotation. Results

show that larger thrust and efficiency can be attained if the feathered-to-broadside rotation is started right after the

beginning of the power stroke and the broadside-to-feathered rotation is finished right before the end of the power

stroke. Finally, both the thrust and the efficiency increase with Reynolds number.

r 2007 Elsevier Ltd. All rights reserved.

Keywords: Rowing hydrofoil; Low Reynolds number; Cartesian grid method; Cut-cell approach; Adaptive mesh refinement
1. Introduction

In the course of the development of aircraft and underwater vehicles, bird flight and fish swimming have been

inspiring and guiding the engineers and scientists in the field of aerodynamics and hydrodynamics. Over the years, the

science of biomimetics has been established and structured through the previous works of many researchers. For these

man-made machines, the propulsion system plays a significant role which needs the knowledge and integration of

hydrodynamics, structural mechanics, control theory, etc. For locomotion in water, propulsion by hydrofoil motion is

very common. The types of motion can be put into two major categories. The first is the ‘‘flapping’’ motion, similar to

the thunniform mode of fish swimming (Breder, 1926; Lindsey, 1978). The thunniform mode belongs to the body/caudal

fin (BCF) propulsion and is by far the most efficient locomotion mode evolved in the aquatic environment, where thrust

is generated with a lift-based method, allowing high cruising speeds to be maintained for long periods. Significant lateral

movements occur only at the caudal fin (producing more than 90% of the thrust) and at the area near the narrow

peduncle. Although the design of thunniform swimmers is optimized for high-speed swimming in calm waters, it is

particularly inefficient for other actions such as slow swimming, turning maneuvers and rapid acceleration from

stationary, as well as for turbulent water. The second is the ‘‘rowing’’ motion which is one of the chief ingredients in the

labriform mode of fish swimming (Breder, 1926; Lindsey, 1978). The labriform mode belongs to the median/paired fin
e front matter r 2007 Elsevier Ltd. All rights reserved.
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(MPF) propulsion and is achieved by oscillatory movements of the pectoral fins. Blake (1983) identified two main

oscillatory movement types for the pectoral fins: (i) a ‘rowing’ action (drag-based labriform mode) and (ii) a ‘flapping’

action (lift-based labriform mode). Drag-based methods are more relevant at slow speeds, while lift-based methods are

more efficient at all flow speeds. Fins rarely perform a purely rowing or flapping movement; instead, a combination of

the two, depending on the swimming speed, is used. It is estimated that about 15% of the fish families use non-BCF

modes as their routine propulsive means, while a much greater number that typically rely on BCF modes for propulsion

employ MPF modes for maneuvering and stabilization (Videler, 1993).

For real fish, the following swimming mode must be mentioned for completeness. That is, the BCF transient mode

for fast starts or turns. Harper and Blake (1990) showed that fast-start acceleration of pike is significantly higher than

that of trout for all performance parameters measured. They found that escape fast-start performance is related to body

form. And their results support previous suggestions (Weihs, 1973; Lighthill, 1975; Webb, 1986) that the body form of

pike is well-designed for BCF transient swimming and that of rainbow trout a compromise, showing some features that

enhance BCF periodic (steady) swimming and some that benefit fast-start performance.

For the flapping motion, the following simple pitch-and-plunge (or heave) motion is most considered in the literature:

h ¼ h1 sinð2pf mtÞ, (1)

a ¼ a0 þ a1 sinð2pf mtþ fÞ, (2)

where h1 is the plunge (or heave) amplitude, a0 the mean pitch angle, a1 the amplitude of the sinusoidal pitch angle

variation, fm the flapping frequency and f the phase difference between the pitch-and-plunge motions. There has been a

lot of experimental work to study and understand the basic mechanisms of force production and flow manipulation in

oscillating (mostly flapping) foils for underwater use (Triantafyllou et al., 2004). The most comprehensive numerical

investigations of the design parameter space are given by Isogai et al. (1999), Tuncer and Platzer (2000), and

Ramamurti et al. (2001). All employed an NACA 0012 airfoil and solved the Reynolds averaged Navier–Stokes

(RANS) equations. Isogai et al. (1999) and Tuncer and Platzer (2000) addressed compressible flows on a structured grid

while Ramamurti et al. (2001) considered incompressible flows on an unstructured grid. The Reynolds number (Re)

based on free-stream velocity and foil chord ranges from 103 to 105. All of them examined the effect of changing h1, a1,
f, and f on the average thrust coefficient and the thrust efficiency. Unfortunately, the results of Isogai et al. (1999) and

Tuncer and Platzer (2000) differ by over 30% for some parameter combinations and the reason is not clear. Mittal

(2004) argued that the turbulence modelling effects have to be examined. As for the results of Ramamurti et al. (2001),

the computed thrust coefficient versus f is generally consistent with the experiments of Anderson (1996) at

Re ¼ 1.1� 103, but there is significant mismatch of thrust coefficient at higher frequencies with the experiments of

Koochesfahani (1987) at Re ¼ 1.2� 104.

In contrast to the flapping motion, the rowing motion has received little attention in scientific research, neither in the

numerical simulation nor in the experimental community. Though flapping motion is relevant for energy-efficient

operation, such as is required during cruising, the rowing motion is more relevant to slow speed, maneuvering (starting,

stopping, yawing, etc.) motion (Walker and Westneat, 2002). From a very crude pair of models of thrust-making device

and assuming a constant drag and lift coefficient, Vogel (1996) calculated the average thrust, as a function of swimming

speed, produced by the drag- and lift-based system, respectively. It was concluded that the drag-based system is very

much better when the craft is nearly stationary but the lift-based system is clearly superior at higher swimming speeds.

Recent blade-element computations (Walker and Westneat, 2000) also indicated that even though flapping motion is

more efficient at all flow speeds, higher thrust can be generated at low speeds through a rowing motion. However, little

is known about the wake topologies and other flow details for fins undergoing a rowing motion.

In this paper, a computational fluid dynamics research code based on the Cartesian cut-cell approach with adaptive

mesh refinement was used to study the unsteady flow past a rowing hydrofoil at Reynolds numbers up to 1000. The

simulations at higher Reynolds numbers are tentatively not conducted due to the above-mentioned unclear

discrepancies found in the previous works. The viscous flow past a flat-plate hydrofoil at various rowing frequencies,

heave amplitudes, and other design parameters, was simulated. Results are presented mainly in terms of the average

thrust and the thrust efficiency versus the design parameters. The effect of Reynolds number is also investigated. The

thickness ratio of the flat plate is 1
20
, with each end rounded by a semi-circle. As noted by Vogel (1996), the force

coefficients of the lift-based system are much more sensitive to the cross-sectional shape of the plate than those of the

drag-based system. Also shown in the work of Wang (2000) is that the force coefficients of elliptical cylinders with

different thickness have almost the same functional dependence on the angle of attack but different magnitude. Thus a

sufficiently thin flat plate would fulfill the purpose of the present work to find the tendency or functional relations with

the design parameters.
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2. Governing equations of fluid flow

In this work, a single flat-plate hydrofoil performs rowing motion in an effectively unbounded region with an inflow

stream. The incompressible fluid flow is governed by the Navier–Stokes equations. Taking the hydrofoil chord length

(c) and the free-stream velocity (UN) as the characteristic length and velocity, respectively, the integral nondimensional

equations of motion are given byI
cs

u � ndS ¼ 0, (3)

q
qt

Z
cv

udV þ

I
cs

uðu � nÞ dS ¼ �

I
cs

p ndS þ
1

Re

I
cs

ru � ndS, (4)

where cv and cs denote the control volume and control surface, respectively, and n is the outward unit vector normal to

the control surface. The Reynolds number Re�UNc/n, with n being the kinematic viscosity of the fluid.
3. Kinematic parameters of rowing motion

Rowing motion is a combination of heaving and pitching motion. The hydrofoil heaves back and forth along an axis

parallel to the inflow and has a feathered orientation (nominally parallel to the inflow) during the forward stroke

(recovery stroke) and a broadside orientation (nominally normal to the inflow) during the backward stroke (power

stroke). Assume the power stroke starts at t ¼ 0 and the hydrofoil pitches about its mid-chord axis. A family of profiles

can then be established for the heaving velocity (dh/dt) of the center of the hydrofoil as function of time:

dh

dt
¼

1
2

Vp 1� cos p
t

Tacc;p

� �� �
; 0ptoTacc;p;

Vp; Tacc;pptoTp � Tacc;p;

1
2 Vp 1þ cos p

t� Tp þ Tacc;p

Tacc;p

� �� �
; Tp � Tacc;pptoTp;

�
1

2
Vr 1� cos p

t� Tp

Tacc;r

� �� �
; TpptoTp þ Tacc;r;

�Vr; Tp þ Tacc;rptoT cycle � Tacc;r;

� 1
2

Vr 1þ cos p
t� T cycle þ Tacc;r

Tacc;r

� �� �
; T cycle � Tacc;rptpT cycle;

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(5)

where

T cycle ¼ Tp þ Tr, (6)

Vp ¼
2h1

Tp � Tacc;p
, (7)

Vr ¼
2h1

Tr � Tacc;r
. (8)

The notation Tp and Vp denote the elapsed times and the maximum heaving velocity for the power stroke

respectively. Tr and Vr are the corresponding quantities for the recovery stroke; h1 is the heave amplitude; Tacc,p is the

acceleration time for which the foil speed is increased from 0 to Vp in the power stroke and Tacc,r is the acceleration time

for which the foil speed is increased from 0 to Vr in the recovery stroke. The deceleration time is the same as the

acceleration time for both strokes. These definitions are illustrated in Fig. 1.
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Fig. 1. Schematic showing the position (h) and the velocity (dh/dt) of the hydrofoil center as function of time.
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Similarly, another family of profiles can be established for the pitching angle of attack (a) between the hydrofoil

chord and the inflow direction:

aðtÞ ¼

a0 � a1; 0ptoTlp � Tap;

a0 þ a1 sin p
t� Tlp

2Tap

� �
; Tlp � TapptoTlp þ Tap;

a0 þ a1; Tlp þ TapptoTp þ Tlr � Tar;

a0 � a1 sin p
t� Tp � Tlr

2Tar

� �
; Tp þ Tlr � TarptoTp þ Tlr þ Tar;

a0 � a1; Tp þ Tlr þ TarptoT cycle þ Tlp � Tap;

a0 þ a1 sin p
t� Tlp

2Tap

� �
; T cycle þ Tlp � TapptpT cycle;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(9)

where a0 and a1 is the average and amplitude of the pitching angle of attack respectively; 2Tap is the time for which the

foil rotates from the feathered (a0�a1) to the broadside orientation (a0+a1); 2Tar is the time for which the foil rotates

from the broadside to the feathered orientation; Tlp is the time when the foil angle of attack increases to the average

value from the minimum value, lagging behind the time when the power stroke begins; Tlr is the time when the foil angle

of attack decreases to the average value from the maximum value, lagging behind the time when the recovery stroke

begins. These definitions are illustrated in Fig. 2.

The corresponding position of the hydrofoil center (h) and the angular velocity of the hydrofoil (da/dt) as function of

time can thus be derived from Eqs. (5) and (9), respectively, as

hðtÞ ¼

hmin þ
1
2

Vp t�
Tacc;p

p
sin p

t

Tacc;p

� �� �
; 0ptoTacc;p;

hmin �
1
2 Vp � Tacc;p þ Vp � t; Tacc;pptoTp � Tacc;p;

hmin þ Vp
1

2
Tp � Tacc;p

� �
þ 1

2
Vp tþ

Tacc;p

p
sin p

t� Tp þ Tacc;p

Tacc;p

� �� �
; Tp � Tacc;pptoTp;

hmax þ
1
2

Vr � Tp �
1
2

Vr t�
Tacc;r

p
sin p

t� Tp

Tacc;r

� �� �
; TpptoTp þ Tacc;r;

hmax þ Vr Tp þ
1
2

Tacc;r

� �
� Vr � t; Tp þ Tacc;rptoT cycle � Tacc;r;

hmin þ
1
2

Vr � T cycle �
1
2

Vr tþ
Tacc;r

p
sin p

t� T cycle þ Tacc;r

Tacc;r

� �� �
; T cycle � Tacc;rptpT cycle;

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(10)
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Fig. 2. Schematic showing the pitching angle of attack (a) and the angular velocity (da/dt) of the hydrofoil as function of time.
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da
dt
¼

0; 0ptoTlp � Tap;

a1
p

2Tap

cos p
t� Tlp

2Tap

� �
; Tlp � TapptoTlp þ Tap;

0; Tlp þ TapptoTp þ Tlr � Tar;

�a1
p

2Tar

cos p
t� Tp � Tlr

2Tar

� �
; Tp þ Tlr � TarptoTp þ Tlr þ Tar;

0; Tp þ Tlr þ TarptoT cycle þ Tlp � Tap;

a1
p

2Tap

cos p
t� Tlp

2Tap

� �
; T cycle þ Tlp � TapptpT cycle;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(11)

where

hmin ¼ h0 � h1, (12)

hmax ¼ h0 þ h1, (13)

and h0 is the average position of the hydrofoil center.

In this work, the focus of interest is the effects of the normalized heave amplitude hn

1 � h1=c, reduced frequency

k�2pc/(UNTcycle), and the normalized time lags Tn
lp � Tlp=T cycle and Tn

lr � Tlr=Tcycle. The other parameters are fixed

for all simulations. They are

a0 ¼ a1 ¼ 45�, (14)

Tp ¼ Tr ¼ 0:5 T cycle, (15)

Tacc;p ¼ Tacc;r ¼ 0:1 T cycle, (16)

Tap ¼ Tar ¼ 0:05 T cycle. (17)

That is, the feathered and broadside orientation are actually parallel and normal to the inflow, respectively, and a

duty cycle of 50% is assumed. The corresponding maximum heaving velocities normalized by the inflow velocity are

Vn

p ¼ Vn

r ¼ 2:5k hn

1=p ¼ 2:5 St, (18)

where the Strouhal number St�2h1/(UNTcycle). Note that they are a little less than that occurring in the simple pitch-

and-plunge motion defined by Eq. (1) i.e., pSt. The average position h0 is not relevant, because the hydrofoil moves in

an unbounded region.
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4. Performance parameters

Thrust production is the main purpose of a rowing hydrofoil, therefore the magnitude of thrust and the efficiency of

thrust generation are two important parameters quantifying and analyzing the hydrodynamic performance and the flow

field. Thrust is the reaction of the drag force and the thrust coefficient is defined as

CT ¼ �CD ¼ 2T=ðrU2
1cÞ, (19)

where T is the thrust and r the density of the fluid. The other performance parameters relevant to this work are the lift

coefficient (CL) and the moment coefficient (CM):

CL ¼ 2L=ðrU2
1cÞ, (20)

CM ¼ 2M=ðrU2
1c2Þ, (21)

where L is the lift force and M is the moment of hydrodynamic force about the pitching axis exerted by the fluid.

To elucidate the meaning of the thrust efficiency, note first that the instantaneous mechanical power input to the

ambient fluid by the hydrofoil motion is

PðtÞ ¼ TðtÞ
dh

dt
�MðtÞ

dy
dt

. (22)

Only a portion of the acquired energy in the ambient fluid can contribute back to producing the thrust against the

inflow, i.e., the useful power, TUN. The rest is lost and transferred in the form of kinetic energy to the fluid. Then a

thrust efficiency (Z), called the Froude efficiency after William Froude (1810–1879) who first used it, can be defined as

the ratio of the useful power to the mechanical power input in an average sense:

Z ¼
Th iU1

Ph i
, (23)

where / �S denotes the averaging operator over one period of motion,

�h i �
1

T cycle

Z t0þTcycle

t0

dt. (24)
5. Numerical method

The governing equations, Eqs. (3) and (4), constitute a nonlinear and coupled system of differential equations. The

cell-centered collocated finite volume pressure-free projection method combined with cut cell Cartesian approach is

applied to discretize this set of coupled equations with immersed arbitrarily moving bodies. This method has been

detailed and the computer code verified and validated extensively in the earlier work (Chung, 2006). It is modified in this

work mainly in the following aspects.

First, only the first probing point on the reference normal line to the boundary segment is established, hence the

evaluation of diffusion flux on the body surface turns out to be first-order accurate.

Second, if a previously negative (solid) cell center becomes positive (fluid) at the current time step, the numerical

solution of the advection–diffusion equation for this cell is abandoned. Instead, the current cell center velocity is

interpolated out from the neighboring solution nodes (Udaykumar et al., 1999) by the inverse distance scheme.

Numerical experience showed that this modification would reduce the newborn cell related oscillations on the curve of

drag or lift as function of time while hardly affecting the carrier curve.

Third, the adaptive mesh refinement (AMR) is introduced to use as few as possible mesh cells while not downgrading

the spatial resolution in the relevant regions.

Fourth, due to the unstructured mesh numbering inherent in AMR, the solution stencil is no more compact and the

strongly implicit procedure (SIP) used by Chung (2006) is not appropriate for solving the present system of algebraic

equations formed by the linearized discretized governing equations. Instead, the Krylov subspace method is called for.

The necessity imposed by SIP of explicit treatment for the far nodes in the solution stencil mentioned in Chung (2006)

can now be relaxed by the Krylov subspace method.

It can be argued that the first two modifications only influence the accuracy of solution locally near the solid body,

while the global superlinear order of accuracy (Chung, 2006) would not be destroyed. Therefore, the verification and
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validation for these two modifications can be skipped reasonably. The last two modifications will be addressed in detail

in the following subsections.

5.1. Adaptive mesh refinement

For accurately simulating the flow field around arbitrarily moving bodies, sufficiently fine meshes are called for in

near-body regions and regions with complicated flow structures. However, the near-body region changes its location

following the body motion and prior knowledge of locations of complicated flow regions is impossible even in a steady

simulation. If the grid is fixed throughout the simulation, it is inevitable to lay fine meshes on the whole computational

domain, causing an astonishingly high computational cost. The idea of AMR can overcome these difficulties. In the

AMR approach, fine meshes are distributed only in the above two regions and coarse meshes in other regions. The

number and distribution of fine and coarse meshes thus change with time. From the current to the next time step, if

some fine meshes are judged to be merged into a coarser mesh (de-refinement), the variable value at the new mesh cell

center is obtained by some sort of spatial average (restriction); if a coarse mesh is judged to be split into some finer

meshes (refinement), the variable values at the new mesh cell centers is obtained by some sort of spatial interpolation

(prolongation). Hence book-keeping is necessary to record the relation of inheritance between the two meshes for these

two operations.

In this work, PARAMESH V2.0 (MacNeice et al., 2000) was adopted to implement the idea of AMR mainly due to

ease of combining it with the in-house code. The computational domain is discretized by various hierarchical

rectangular sub-grids which form the nodes of tree data-structure (quad-tree for 2-D and oct-tree for 3-D). If the spatial

resolution in a sub-grid is judged to be increased, it turns out to be a parent grid block, spawns 4 (8 for 3-D) child grid

blocks at one more refinement level, and hides behind. The prolongation of bilinear interpolation is used to evaluate the

variable values at the center of each spawn grid block. If the spatial resolution in each of 4 (8 for 3-D) child grid blocks

and their parent grid block is judged to be decreased, the child grid blocks merge and disappear with their parent grid

block surfacing. The restriction of arithmetic mean is used to evaluate the variable values at the center of the surfacing

grid block. A leaf grid block is defined as a newly spawn or surfacing grid block. Numerical computations are

conducted only in leaf grid blocks. All the grid blocks have the same logical structure and cell number in each spatial

dimension. They only differ in size, location, the parent block, and the list of neighboring and child blocks.

In this work, the cell number in each sub-grid block (Nx�Ny) is fixed at (4� 4). For grid blocks cut by or close to

body surfaces, the refinement level is fixed at a constant number throughout the simulation, called the body refinement

level (lbody). For other grid blocks, the basic criterion for refinement and de-refinement of a sub-grid block are,

respectively, set to

max
i;j
joi;j j40:02 omax ði ¼ 1; . . . ;Nx and j ¼ 1; . . . ;NyÞ, (25)

max
i;j
joi;j jo0:01 omax ði ¼ 1; . . . ;Nx and j ¼ 1; . . . ;NyÞ, (26)

where oi,j is the vorticity vector of cell (i,j) and omax is the maximum magnitude of vorticity vector in the current flow

field. In the near-body region, the maximum refinement level is lbody; in the bulk region off the body, a different

maximum refinement level lbulk is adopted. Usually lbulkolbody to effectively reduce the total cell numbers. The near-

body region is delimited by a collar zone which is an extension to the rectangular box defined by the extreme

coordinates of the solid body surface; see Fig. 3.

Besides data passing from the previous to the current time step, the other complexity induced by applying the mesh

refinement strategy is the flux evaluation at the interfaces between fine and coarse meshes in the finite volume method.

In this work, a consistent scheme with compact stencil is devised to approximate this flux. As shown in Fig. 4, for a

general variable f,

fe1
¼ 1

3
fP þ

5
6
fQ1
� 1

6
fQ2

; fe2
¼ 1

3
fP �

1
6
fQ1
þ 5

6
fQ2

, (27)

qf
qx

� �
e1

¼
qf
qx

� �
e2

¼
1

hQ;x
�
2

3
fP þ

1

3
fQ1
þ

1

3
fQ2

� �
, (28)

where hQ,x is the fine mesh cell size in the x direction. These constitute the building-block formulas for various flux

approximations at the fine mesh cell face ‘‘e1’’ and ‘‘e2’’. To assure the conservation of physical quantities, the flux on

the full eastern cell face of the coarse mesh cell P is exactly the sum of those on the western cell face of the fine mesh cell

Q1 and Q2. This scheme can be derived by regarding P, Q1, and Q2 as three nodes of a linear triangular element. In the

Appendix, the order of accuracy for this scheme will be illustrated.
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Fig. 4. Illustration for the flux evaluation at the interface between fine and coarse mesh in the finite volume method.
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Fig. 3. Schematic showing the different selection of maximum refinement level. The dashed line defines the body rectangle zone to

which the collar zone of width d is extended. The two zones form the near-body region inside of which lmax ¼ lbody. In the exterior

region lmax ¼ lbulk.
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Finally, PARAMESH was originally designed and developed for astronomical computations (Antiochos et al., 1999),

therefore the boundary conditions are far-field type. In this work, the formula of restriction and prolongation for the

cells adjacent to the boundary of computational domain were modified to reflect the half-cell effect. Further, for parallel

computation, the Morton reordering of sub-grid blocks in PARAMESH was designed to increase data locality, hence

reduce the data passing time between processors. In view of serial computation of the in-house code used in this work,

this reordering is disabled to save on the memory demand. The source code and license agreement of PARAMESH can

be downloaded via the internet: http://ct.gsfc.nasa.gov/paramesh/Users_manual/amr.html.

5.2. Solution of the algebraic equations system

The system of linear algebraic equations generated for each solution variable has the form

A x ¼ b, (29)

where x is the solution vector, b the source vector, and A the sparse and non compact irregularly structured coefficient

matrix due to the unstructured mesh numbering inherent in AMR. This system can be efficiently solved by the Krylov

subspace method. In this work, a basic tool kit for sparse matrix computations, the SPARSKIT, downloadable from

http://www-users.cs.umn.edu/�saad/software/SPARSKIT/sparskit.html, was linked to the in-house code to do the

iterative computations and associated matrix manipulations and operations. SPARSKIT supports a variety of data

storage formats and the conversion routines between each other. Most of the routines in SPARSKIT use internally the

compressed sparse row (CSR) format due to simplicity, generality, and widespread use. In this work, this basic format is

used to store the nonzero elements of the coefficient matrix. Meanwhile, the mapping of data structure from

PARAMESH to SPARSKIT was also established. From this tool kit, the restarted generalized minimal residual

method (Saad and Schultz, 1986), called GMRES(m), is selected to solve the linear system which is right preconditioned

by the incomplete LU factorization with dual truncation strategy (ILUT). Throughout the simulations in this work, the

http://ct.gsfc.nasa.gov/paramesh/Users_manual/amr.html
http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html
http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html
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choice of the dimension of Krylov subspace, m, is 3 for the u and v equations and 20 for the pressure Poisson equation.

The relative dropping threshold in L and U is set at 5� 10�3 for the u and v equations and 10�4 for the pressure Poisson

equation. The number of fill-in elements in L and U is set at 60 for the u, v and the pressure Poisson equations. There are

no definite rules for determining or optimizing these numerical values, hence they were settled by trial and error in this

work. In GMRES(m), the Arnoldi procedure is used to construct an orthonormal basis for the Krylov subspace. The

problem of minimizing the residual (a least squares problem) is solved by the QR decomposition method performed

with transformation by a sequence of Givens rotations.

For the pressure Poisson equation, the convergence criterion is that the maximum of the residuals normalized by the

cell volume, Vcell, over all the control volumes should be less than a prescribed value, usually 10�3 for unsteady

simulations, i.e.,

A � x� b

V cell

����
����
1

o10�3. (30)

For the u and v equations, they must be solved in a coupled way because the fully implicit scheme is used for the

advection–diffusion equation (Chung, 2006). That is, there is a loop for outer iteration. For each outer iteration, A is

reestablished using the last updated mass flux and Eq. (29) is solved by m inner iterations of GMRES for the u and then

v equation. A reasonable convergence criterion for the outer iteration is

maxi flþ1
i � fl

i

		 		
maxiðf

lþ1
i Þ �miniðf

lþ1
i Þ

o10�3, (31)

where f stands for u or v, i is the index of the solution node and l the loop count of the outer iteration.
6. Numerical results

At first, the computational domain to perform the simulations is [�16, 16]� [�16, 16]. At the left boundary, an

inflow velocity UN is imposed. At the right boundary, the outflow condition is employed (Chung, 2006). The bottom

and top boundaries are fully slippery and impermeable. The hydrofoil heaves back and forth along the x-axis. The

average position of the hydrofoil center is h0 ¼ �4. The simulation starts at t ¼ 0 when the hydrofoil center comes to

the left-most position and the power stroke begins. Only the first period of motion is simulated. The width of the collar

zone d ¼ 0.25c. The time step size obeys the CFL-like condition:

Dt ¼ f �min 2 min
i2fluid node

min
Dx

juj
;
Dy

jvj

� �� �
i

�
min

i2solid boundary node
min

Dx

un;x

		 		 ; Dy

un;y

		 		
 ! !

i

#
, (32)

where fp1 and un,x and un,y denote, respectively, the x- and y-component of the normal velocity at the solid boundary

node.

In the following simulations, unless stated otherwise, f ¼ 0.5 and the two maximum refinement levels are lbody ¼ 11

and lbulk ¼ 9, generating the minimum mesh size of 1
128

and 1
32
, respectively. Fig. 5 shows the sub-grid block topology at

selected instants for the case of hn

1 ¼ 2, k ¼ 8, and Tn
lp ¼ Tn

lr ¼ 0 at Re ¼ 1000.

The range of design parameters studied in this work is listed in Table 1. Only a few combinations of them were

selected to conduct simulations. The Reynolds number effect is investigated for only one combination via simulations at

Re ¼ 10, 50, 100, 500, and 1000.

6.1. Convergence test

To test for convergence, three simulations were run: the first employs f ¼ 0.5, lbody ¼ 11 and lbulk ¼ 9, the second

f ¼ 1, lbody ¼ 12 and lbulk ¼ 10, and the third f ¼ 0.25, lbody ¼ 11 and lbulk ¼ 9. The first two are compared to test

convergence in grid resolution and the first and the third to test convergence in time step size. For these simulations

Re ¼ 1000 and the design parameters are hn

1 ¼ 2, k ¼ 8, and Tn
lp ¼ Tn

lr ¼ 0. The computed thrust, lift, and moment

coefficients as function of normalized time (t/Tcycle) are plotted in Fig. 6 with high-frequency oscillations filtered out.

Note that those mesh-size scale oscillations existing in the raw data are directly related to the process of merging cells

when a node switches from fluid to solid. The amplitude of oscillation is larger when the time step size is smaller because

the cell shape deformation (cell volume increase) due to cell merging is bigger for a smaller time step size. Nevertheless,

the high-frequency components do hardly influence the low-frequency ones, hence can be neglected. The curves of
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Table 1

Range of design parameters studied

hn

1
k Tn

lp Tn
lr

1, 2, 4 1, 2, 4, 6, 8 �0.05, 0, 0.05, 0.1 �0.15, �0.1, �0.05, 0, 0.05

-8 -6 -4 -2 0
-2

0

2

-8 -6 -4 -2 0
-2

0

2

-8 -6 -4 -2 0
-2

0

2

-8 -6 -4 -2 0
-2

0

2

 = 0.2 

t/Tcycle = 1 

t/Tcycle = 0.8 

t/Tcycle

t/Tcycle

 = 0.5 

Fig. 5. Sub-grid block topology at selected instants for the case of hn

1 ¼ 2, k ¼ 8, and Tlp ¼ Tlr ¼ 0 at Re ¼ 1000. Note that each sub-

grid block has 4� 4 mesh cells.
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thrust coefficient show very good agreement. For the lift and moment coefficients the convergence is acceptable. Table 2

presents various average, minimal, and maximal hydrodynamic coefficients and the thrust efficiency obtained from

these smoothed curves. Also shown are the corresponding percentage maximal differences among the three simulation

cases. Again, the convergence is satisfactory, especially the averaged quantities. Therefore, the grid resolution and the
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Fig. 6. Convergence test in grid resolution and time step size in terms of average hydrodynamic performance.
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time step size used in the first simulation (f ¼ 0.5, lbody ¼ 11 and lbulk ¼ 9) were employed to conduct all the other

simulations in this work for the sake of saving computational cost.
6.2. Effect of normalized heave amplitude hn

1 and reduced frequency k

The first parameter study is to examine the effect of normalized heave amplitude (hn

1) and reduced frequency (k) on

various hydrodynamic performances at Re ¼ 1000. For simulations in this subsection, hn

1 is varied from 1 to 4, k from 1

to 8 and the other parameters kept constant (Tn
lp ¼ Tn

lr ¼ 0). The result is presented in terms of performance parameter

as function of the Strouhal number (St).

Fig. 7 shows the average thrust coefficient as function of the Strouhal number for different normalized heave

amplitudes. The data collapse is very good, compared with the data of 2-D flapping foil computed by Tuncer and

Platzer (2000). Moreover, the average thrust coefficient increases in a nearly quadratic manner with the Strouhal
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Table 2

Results of the convergence test in grid resolution and time step size

Case /CTS CT,min CT,max /CLS CL,min CL,max /CMS CM,min CM,max Z

(1)

f ¼ 0.5

lbody ¼ 11 104.92 �731.48 728.06 25.10 �401.19 556.09 1.22 �137.45 219.91 0.0567

lbulk ¼ 9

(2)

f ¼ 1.0

lbody ¼ 12 105.47 �663.87 712.96 18.85 �323.46 503.11 2.58 �107.78 183.42 0.0571

lbulk ¼ 10

(3)

f ¼ 0.25

lbody ¼ 11 98.82 �882.96 733.48 31.24 �451.64 629.27 0.39 �157.81 231.94 0.0568

lbulk ¼ 9

eF (%) 0.45 14.76 1.38 1.30 13.42 13.21 0.63 14.46 14.02 0.57

For the hydrodynamic coefficients, the maximal difference

�Fi
�

max
case¼1;3

ðFiÞcase � min
case¼1;3

ðFiÞcase

average
case¼1;3

ðCi;max � Ci;minÞ
; i ¼ T ;L;M and F i ¼ hCii;Ci;min;Ci;max.

For the thrust efficiency, �Z �
max

case¼1;3
ðZÞcase � min

case¼1;3
ðZÞcase

average
case¼1;3

ðZÞcase
:

St

<
 C

T
 >

100 2 4 6 8 12

0

100

200

300

400
h1

* = 1

h1
* = 2

h1
* = 4

Fig. 7. Average thrust coefficient as function of the Strouhal number for different normalized heave amplitudes at Re ¼ 1000 and

Tn
lp ¼ Tn

lr ¼ 0:
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number. It is known that a bluff body moving in a uniform flow will experience a drag force proportional to the squared

velocity of the body relative to the flow if the form drag dominates. The foil in broadside orientation during the power

stroke behaves like a bluff body moving relative to the fluid flow at a velocity of (Vp–UN). The normalized maximal

relative velocity can be derived from Eq. (18) as

Vn

p � 1 ¼ 2:5 St� 1. (33)

Therefore the above result is not surprising because the drag (thrust) coefficient will be proportional to St2 for large

St. Note that average thrust coefficient is negative for the cases with k hn

1 ¼ 2 (St ¼ 0.637), though the maximal heaving
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velocity still exceeds the inflow velocity [see Eq. (33)]. This fact can be attributed to the lower heaving velocities in the

acceleration and the deceleration phase respectively, at the early and the final stage of power stroke.

Fig. 8 shows the average lift coefficient as function of the Strouhal number for different normalized heave amplitudes.

The data collapse is also very good. It features the positive lift force, except for the case with k ¼ 6, hn

1 ¼ 4 (St ¼ 7.639).

However, in comparison with the thrust force, the lift force can be disregarded more reasonably as the Strouhal number

reaches a larger value.

Fig. 9 shows the thrust efficiency as function of the Strouhal number for different normalized heave amplitudes. To

study the trend, cases with negative efficiency due to negative thrust mentioned above observed at khn

1 ¼ 2 are not

shown. If lower amplitude (hn

1 ¼ 1) discarded, the data collapse is good and thrust efficiency decreases with increasing

Strouhal number. For lower normalized heave amplitude (hn

1 ¼ 1), thrust efficiency exhibits irregular variation. The

maximal reachable efficiency is about 0.2 at k ¼ 1 and hn

1 ¼ 4 (St ¼ 1.273). Finally, for constant St, the thrust efficiency

decreases with increasing k though the maximal heaving velocity keeps constant as indicated in Eq. (18). It is argued

that higher acceleration and shorter amplitude of heave motion due to higher reduced frequency causes more complex

flow fields and more energy lost in the fluid kinetic energy, thus reducing the efficiency.
St
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Fig. 8. Average lift coefficient as function of the Strouhal number for different normalized heave amplitudes at Re ¼ 1000 and

Tn
lp ¼ Tn

lr ¼ 0:
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Fig. 9. Thrust efficiency as function of the Strouhal number for different normalized heave amplitudes at Re ¼ 1000 and Tn
lp ¼

Tn
lr ¼ 0:
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6.3. Effect of normalized time lags Tn
lp and Tn

lr

Because the second highest thrust efficiency at Re ¼ 1000 is found in the case of k ¼ 2 and hn

1 ¼ 2 with Tn
lp ¼ Tn

lr ¼ 0

(Fig. 9), the effect of Tn
lp and Tn

lr at this Reynolds number is examined for this combination of k and hn

1.

The combination of k ¼ 1 and hn

1 ¼ 4 produces the highest efficiency, but the extra long heave amplitude would be

rarely found in practice. Hence the study of this amplitude was abandoned for that of hn

1 ¼ 2. In fact, from the

mechanisms of how these two time lags influence the hydrodynamic performances, as discussed later, the conclusion

drawn about the effect of these two time lags is not supposed to change with the design parameters, at least for this

Reynolds number.

Before studying their effects, some particular numerical values are mentioned due to relevance to the characteristics

of the rowing kinematics. That is, for Tn
lp ¼ �0:05, the feathered-to-broadside rotation is started exactly when the

deceleration phase of the recovery stroke begins and the rotation is completed exactly at the end of the recovery stroke;

for Tn
lp ¼ 0:05, the rotation starting is delayed until the end of the recovery stroke and the fully broadside orientation is

attained at the end of the acceleration phase of the power stroke. Similarly, for Tn
lr ¼ �0:05, the broadside-to-feathered

rotation is started exactly when the deceleration phase of the power stroke begins and the rotation is finished just at the

end of the power stroke; for Tn
lr ¼ 0:05, the broadside-to-feathered rotation is delayed until the end of the power stroke

and the fully feathered orientation is attained at the end of the acceleration phase of the recovery stroke.

Fig. 10 presents the average thrust coefficient as function of Tn
lp for different Tn

lr. For any given Tn
lr, except for

Tn
lr ¼ 0:05, the average thrust coefficient increases with Tn

lp. For any given Tn
lp, the average thrust coefficient increases as

Tn
lr is lowered down from 0.05 to �0.1. If the broadside-to-feathered rotation is started further earlier (Tn

lr ¼ �0:15), the
average thrust coefficient can not be augmented any more. Conversely, it comes back near the curve for Tn

lr ¼ �0:05.
Thus, the thrust hits maximum for the case of Tn

lp ¼ 0:1 and Tn
lr ¼ �0:1 and the minimum (negative value) for the case

of Tn
lp ¼ �0:05 and Tn

lr ¼ 0:05. A brief conclusion can be drawn from this figure that, in general, larger thrust would be

acquired if the feathered-to-broadside rotation is started after the beginning of the power stroke and the broadside-to-

feathered rotation is finished before the end of the power stroke.

Fig. 11 presents the average lift coefficient as function of Tn
lp for different Tn

lr. For any given Tn
lr, except for Tn

lr ¼ 0,

the average lift coefficient increases with Tn
lp. However, there is no definite rule for the variation of the average lift

coefficient with Tn
lr for any given Tn

lp. It is noted that most cases produce positive lift with the maximum being generated

in the case of Tn
lp ¼ 0:1 and Tn

lr ¼ �0:15. The ratio of lift to thrust is about 0.516 for this case.

Fig. 12 presents the thrust efficiency as function of Tn
lp for different Tn

lr. For any given Tn
lp, the thrust efficiency

increases as Tn
lr is lowered down from 0.05 to �0.05. The values of thrust efficiency in the curves for Tn

lr ¼ �0:15 and

Tn
lr ¼ �0:1 are nearly the same as those in the curve for Tn

lr ¼ �0:05. Thus, the thrust efficiency hits the maximum

(0.274) for the case of Tn
lp ¼ 0:05 and Tn

lr ¼ �0:05 and the minimum (�0.016) for the case of Tn
lp ¼ �0:05 and
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Fig. 10. Average thrust coefficient as function of Tn
lp for different Tn

lr at Re ¼ 1000, k ¼ 2 and hn

1 ¼ 2.
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Fig. 11. Average lift coefficient as function of Tn
lp for different Tn

lr at Re ¼ 1000, k ¼ 2 and hn

1 ¼ 2.

T *
lp

η

-0.1 -0.05 0 0.05 0.1 0.15
-0.1

0

0.1

0.2

0.3

T *
lr = -0.15

T*
lr = -0.10

T*
lr = -0.05

T*
lr = 0.

T*
lr = 0.05

Fig. 12. Thrust efficiency as function of Tn
lp for different Tn

lr at Re ¼ 1000, k ¼ 2 and hn
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Tn
lr ¼ 0:05. The overall pattern of variation resembles that for the average thrust coefficient. Thus, larger efficiency

would be attained if the feathered-to-broadside rotation is started ‘‘right’’ after the beginning of the power stroke and

the broadside-to-feathered rotation is finished ‘‘right’’ before the end of the power stroke.

To understand the mechanisms how these time lags influence the hydrodynamic performance, the transient behavior

of the force and moment coefficients in two opposite cases were examined. The first case is Tn
lp ¼ 0:05 and Tn

lr ¼ �0:05
and the second Tn

lp ¼ �0:05 and Tn
lr ¼ 0:05. Fig. 13 shows the thrust coefficient as function of normalized time for these

two cases. It can be seen that major differences between the two cases are found in the acceleration and the deceleration

phase of the heave motion. In the acceleration phase of the power stroke (t/Tcycle ¼ 0–0.1), for Case 1, the foil rotates

from the feathered to the broadside orientation; for Case 2, the foil keeps broadside oriented through the phase. The
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Fig. 13. Thrust coefficient as function of normalized time for two combinations of Tn
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combination of rotational and linear motions in Case 1 causes larger peak thrust than the purely linear motion in Case 2

does. In the constant-velocity phase of the power stroke (t/Tcycle ¼ 0.1–0.4), the two cases differ little. When the foil

motion falls into the deceleration phase of the power stroke (t/Tcycle ¼ 0.4–0.5), abrupt drops in thrust can be observed

for both cases. This thrust drop is mainly due to the inertia force on the foil exerted by the fluid on the upstream side of

the foil (�x side in this work). This phenomenon can be interpreted in terms of the accelerated fluid impacting on the

relatively fixed foil. However, the broadside-to-feathered rotation of Case 1 alleviates this inertia impact, hence not

lowering the thrust as much as Case 2. At the end of the power stroke, the acceleration phase of the recovery stroke (t/

Tcycle ¼ 0.5–0.6) starts. In this phase, the thrust is nearly zero for Case 1 because the foil is fully feathered oriented;

however, the thrust is first reduced further and then rises up to nearly zero for Case 2 because the foil undergoes and

completes the broadside-to-feathered orientation in this phase. In the constant-velocity phase of the recovery stroke (t/

Tcycle ¼ 0.6–0.9), nearly zero thrust is generated for both cases due to the fully feathered orientation. Finally, in the

deceleration phase of the recovery stroke (t/Tcycle ¼ 0.9–1), thrust is nearly zero for Case 1 due to the foil being still in

the fully feathered orientation; for Case 2, the interplay of the inflow velocity, the linear velocity and deceleration of

foil, and the change of orientation produces a negative thrust with an initial drop and a later rise. Eventually, the

average thrust of Case 1 is much larger than that (negative value) of Case 2 as shown in Fig. 10.

For the thrust efficiency, the moment coefficient as function of normalized time for these two cases, as shown in

Fig. 14, is also required to analyze the corresponding average mechanical power. First, look into the contribution of

thrust to the average mechanical power by inspecting Fig. 13 again. Because significant differences between the two

cases occur only in the acceleration and the deceleration phase of the heave motion, especially early in the acceleration

phase and late in the deceleration phase, the average mechanical power due to thrust differs little between the two cases

as implied in Eq. (22), considering the low heaving velocity in these phases. Then, turning to the contribution of

moment to the average mechanical power, the curve for the moment coefficient of one case is basically the time-shifted

(lead or lag) one of the other case, as shown in Fig. 14. For the power-to-recovery stroke switch, Case 1 leads Case 2

while for the recovery-to-power stroke switch, Case 1 lags behind Case 2. Because the time lead or lag is synchronous

with the kinematic one, i.e., Tn
lp and Tn

lr, the average mechanical power due to moment differs little between the two

cases as implied in Eq. (22). In summary, there would not be large difference in the average mechanical power between

the two cases. In fact, the average mechanical power coefficients of Cases 1 and 2 are 22.6 and 22.4, respectively. Thus,

the thrust efficiency as function of Tn
lp and Tn

lr has the same characteristics as the thrust coefficient as implied in Eq. (23).

Fig. 15 presents the vorticity contour at selected instants in the power stroke for these two cases. For Case 1, it can be

seen that, when the foil is oriented broadside, the vortex flow structures are asymmetrical about the x-axis because the

earlier feathered-to-broadside rotation. Approaching the end of the power stroke, a strong vortex is generated above

the foil due to the broadside-to-feathered rotation. However, the thrust is hardly affected because the foil is nearly
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feathered oriented. For Case 2, it can be seen that a symmetric vortex pair is attached to the foil on the upstream side

through this stroke. Besides, another vortex pair on the downstream side is clearly formed approaching the end of

the power stroke because of the inertia impact by the upstream fluid on the foil due to foil deceleration mentioned

above.

Fig. 16 presents the vorticity contour at selected instants in the recovery stroke for these two cases. For Case 1, due to

the feathered orientation, the vortex flow structures inherited from the power stroke are gradually dissipated in the flow

and eventually left behind by the foil. For Case 2, because all the changes of orientation occur in this stroke, strong

vortices are newly generated and the vortex flow structures are more complicated than those of Case 1. Note that a large

negative thrust can be easily linked to the vortical structures at t/Tcycle ¼ 0.52.

6.4. Effect of Reynolds number

To examine the effect of Reynolds number, the design parameters of k ¼ 2 and hn

1 ¼ 2 with Tn
lp ¼ 0:05 and Tn

lr ¼

�0:05 were selected to perform simulations at Re ¼ 10, 50, 100, 500, and 1000. Fig. 17 presents the computed average

thrust coefficient as function of Re. It can be observed that the average thrust coefficient increases rapidly with Re at

very low Re and enters on a plateau approaching higher Re. Further scrutinizing the transient thrust decomposed into

the pressure part and the viscous part (Fig. 18), the latter is affected by Reynolds number much stronger than the

former in the recovery stroke. The viscous force exerted on the foil in the recovery stroke (negative thrust) grows with

decreasing Re. The growth rate is larger for smaller Re, hence explaining the rapid reduction of the thrust with

decreasing Re.

From the similarity solution of laminar flow over a flat plate (Blasius, 1908), an important problem in the boundary

layer theory, it is known that the viscous drag coefficient (CD,rel) is related to the Reynolds number (Rerel) as

CD;rel ¼ 2:676Re
�1=2
rel , (34)

where

CD;rel � 2D=rV2
relc, (35)

Rerel � V relc=n, (36)

with D being the drag force and Vrel the relative free-stream velocity. Note that the numerics, 2.676, in the right-hand

side of Eq. (34) has reflected the fact that the plate experiences the viscous force both on the top and bottom surfaces. In

the most part of the recovery stroke, Vrel ¼ Vp+UN, that is, Vn
rel � V rel=U1 ¼ Vn

p þ 1. Being aware of the different

definitions of the force coefficient and the Reynolds number in the present work, the following relation can be derived



ARTICLE IN PRESS

-6 -4 -2 0 2

-2

-1

0

1

2

-6 -4 -2 0 2

-2

-1

0

1

2

t/Tcycle = 0.02 

-6 -4 -2 0 2

-2

-1

0

1

2

-6 -4 -2 0 2

-2

-1

0

1

2

t/Tcycle = 0.44 

0 2-6 -4 -2

-2

-1

0

1

2

-6 -4 -2 0 2

-2

-1

0

1

2

t/Tcycle = 0.40 

0 2-6 -4 -2

-2

-1

0

1

2

-6 -4 -2 0 2

-2

-1

0

1

2

t/Tcycle = 0.20 

0 2-6 -4 -2

-2

-1

0

1

2

-6 -4 -2 0 2

-2

-1

0

1

2

t/Tcycle = 0.10 

-6 -4 -2 0 2

-2

-1

0

1

2

-6 -4 -2 0 2

-2

-1

0

1

2

t/Tcycle = 0.06 

0 2-6 -4 -2

-2

-1

0

1

2

-6 -4 -2 0 2

-2

-1

0

1

2

t/Tcycle = 0.48 

( *
lpT = 0.05 , *

lrT = -0.05 ) ( *
lpT = -0.05 , *

lrT = 0.05 )

Fig. 15. Vorticity contour at selected instants in the power stroke for two combinations of Tn
lp and Tn

lr at Re ¼ 1000, k ¼ 2 and hn

1 ¼ 2.
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Fig. 16. Vorticity contour at selected instants in the recovery stroke for two combinations of Tn
lp and Tn

lr at Re ¼ 1000, k ¼ 2 and

hn

1 ¼ 2.
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from Eqs. (34)–(36):

qCT

qRe
¼ 1:338

Vn
rel

Re

� �3=2

, (37)

showing that the growth rate increases with decreasing Re. For k ¼ 2 and hn

1 ¼ 2, this slope is calculated to be 0.362,

0.032, and 0.011 for Re ¼ 10, 50 and 100, respectively. In Fig. 17, the slope is 0.066 between Re ¼ 10 and 50 and 0.02

between Re ¼ 50 and 100, both consistent with those calculated above. This simple model also indirectly assures the

reliable simulations in the present work.

Similar trends exist in the thrust efficiency as function of Re as shown in Fig. 17. The reason is that the contribution

of the moment to the mechanical power, due to either pressure or viscous force, is almost the same for different

Reynolds numbers, as shown in Fig. 19.

In a brief summary, the effect of Reynolds number manifests itself mainly in terms of the viscous force exerted on the

foil in the recovery stroke.
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7. Conclusions

In this paper, the hydrodynamic performance of a 2-D flat-plate hydrofoil in rowing motion is numerically studied by

a Cartesian grid method with the cut-cell approach. The design parameters studied are the reduced frequency of the

rowing motion, the amplitude of the heave motion, and the time lags of the feathered-to-broadside rotation and the

broadside-to-feathered rotation.

The major conclusions drawn from the simulation results are as follows. Both the average thrust coefficient and the

average lift coefficient exhibit very good data collapse as function of Strouhal number. Further, the former correlates very

well (in a quadratic manner) with the Strouhal number. Positive average lift force is generated for most cases subject to the

proposed rowing kinematics. For a constant maximal heaving velocity, the thrust efficiency decreases with increasing

reduced frequency. For the reduced frequency and the normalized heave amplitude fixed, larger thrust and efficiency can be

attained if the feathered-to-broadside rotation is started right after the beginning of the power stroke and the broadside-to-

feathered rotation is finished right before the end of the power stroke. Finally, both thrust and efficiency increase with Re.
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Appendix A

The interpolation scheme at the coarse–fine cell interface for the solution variable and its normal derivative is devised

for the sake of easy implementation. Theoretically, the order of accuracy is two and one for the solution variable and its

normal derivative, respectively. For illustration, the following test problem is solved and the results compared with the

exact solution:

r2F ¼ �8p2 sinð2pxÞ cosð2pyÞ in the domain ½0; 1� � ½0; 1�, (38)

Fð0; yÞ ¼ Fð1; yÞ ¼ 0 and

Fðx; 0Þ ¼ Fðx; 1Þ ¼ sinð2pxÞ. ð39Þ

The exact solution is F(x,y) ¼ sin(2px)cos(2py).
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Three grids were used for grid-independence test. Each has two levels of refinement of which the interface consists of

four sides of the square [0.25, 0.75]� [0.25, 0.75]. The coarsest grid has two mesh sizes, 1
64
and 1

32
, and 128 cell interfaces

as shown in Fig. A.1. The corresponding numerics for the middle and finest grid are ( 1
128

, 1
64
, 256) and ( 1

256
, 1
128

, 512)

respectively. For any quantity f, The L2-norm error is defined as

� ¼
1

N interface

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN interface

i¼1

ðf i;cal � f i;exactÞ
2

vuut , (40)

where Ninterface is the total number of coarse–fine cell interfaces. fi,cal and fi,exact are calculated and exact values,

respectively, at the center of the ith interface. For the present grid-independence test, f is taken as F or dF/dn where n

denotes the normal direction of the interface.
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Fig. A.1. The coarsest grid for grid-independence test of the interpolation scheme employed at the coarse–fine cell interface.
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Fig. A.2. Result of grid-independence test of the interpolation scheme employed at the coarse–fine cell interface. The test problem is

the Poisson equation r2F ¼ �8p2 sinð2pxÞ cosð2pyÞ in the domain [0, 1]� [0, 1] with Fð0; yÞ ¼ Fð1; yÞ ¼ 0 and

Fðx; 0Þ ¼ Fðx; 1Þ ¼ sinð2pxÞ. The dashed lines indicate the first- and second-order convergence.
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Fig. A.2 depicts the result of grid-independence test, showing better than second-order accuracy for F and better than

first-order accuracy for dF/dn.
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